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ABSTRACT

A new numerical technique is proposed for the electromagnetic characterization of
the scattering by a three-dimensional cavity-backed aperture in an infinite ground plane.
The technique combines the finite element and boundary integral methods to formulate
a system of equations for the solution of the aperture fields and those inside the cavity.
Specifically, the finite element method is employed to formulate the fields in the cavity
region and the boundary integral approach is used in conjunction with the equivalence
principle to represent the fields above the ground plane. Unlike traditional approaches,
the proposed technique does not require knowledge of the cavity’s Green’s function and is,
therefore, applicable to arbitrary shape depressions and material fillings. Furthermore,
the proposed formulation leads to a system having a partly full and partly sparse as well

as symmetric and banded matrix which can be solved efficiently using special algorithms.



I. INTRODUCTION

Recently, a new technique which combines the finite element and boundary integral
formulations to yield a system for solution via the conjugate gradient method (CGM)
and the fast Fourier transform (FFT) was proposed for electromagnetic scattering com-
putations. In particular, the method was formulated for the characterization of filled
slots and grooves in a thick ground plane with transverse electric (TE) and transverse
magnetic (TM) incidence [1], [2]. A similar technique was also proposed in [3] for com-
puting the aperture admittance matrix of the same geometry, but in that procedure a
frontal solution algorithm was employed to reduce the memory demand. In this paper we
describe an extension of the hybrid technique proposed in [1], [2] for the electromagnetic
characterization of three-dimensional (3-D) cavity-backed apertures in a ground plane.

The problem of scattering by 3-D cavity-backed apertures in a ground plane has
been considered in the past via the mode matching [4] and moment method/modal [5]
approaches. A unique feature of both of these techniques is a required knowledge of
the cavity’s Green’s function. They are, thus, mostly restricted to rectangular cavities,
but even then, additional difficulties may arise. For example, the mode matching tech-
nique yields an infinite matrix that must be truncated and in the case of the moment
method/modal approach the admittance elements involve mode sums that are usually
slowly converging. Neither of these methodologies are obviously capable of treating large
size apertures but in the case of deep cavities, high frequency techniques such as those
proposed in [6] and [7] could be effectively employed. Nevertheless, when the cavity is
narrow in one dimension or shallow and perhaps filled with inhomogeneous material, a

numerical solution approach is the likely alternative.



A numerical approach which has demonstrated promise for treating large structures
is the finite difference-time domain approach (FD-TD) [8]. In this case the finite dif-
ference mesh must be terminated with an absorbing boundary condition. In contrast,
the proposed approach avoids possible truncation errors and excess discretization by
representing the fields external to the cavity with the appropriate boundary integrals.
Specifically, the proposed approach employs the finite element method [9] to formulate
the fields within the cavity whereas the fields external to the cavity are expressed via
the radiation integrals over the aperture. The resulting equations are then solved by
demanding continuity of the tangential fields across the aperture. By virtue of the finite
element method, the technique is applicable to cavities of arbitrary shape, possibly filled
with inhomogeneous or composite materials. In the following sections the proposed hy-
brid formulation is discussed in some detail along with the pertinent discretization of
the resulting integral equations. A number of results are then presented which validate
the formulation and we conclude with a discussion on the method’s merits and possible

improvements.,

II. FORMULATION
Consider the 3-D cavity-backed aperture illustrated in Figure 1. We will denote
the free space region above the cavity (z > 0) as region I and that inside the cavity
(—c < z < 0) as region II occupying the volume V. We will further assume that the
cavity is filled with an inhomogeneous material having a relative permittivity ¢,(R) and
relative permeability u.(R).

In accordance with the equivalence principle [10], the fields in the two regions can be



decoupled by closing the aperture with a perfect conductor and introducing the equiva-

lent magnetic current
M=EXxz (1)

over the extent of the aperture, where E is the electric field at the aperture (z = 0). The
field in region I is then due to the radiation caused by the equivalent current M residing
on the ground plane and possibly by other impressed sources (J*, M*). Accordingly, by

invoking image theory we have
H/(R) = H'(R) + H'(R) - 2jkoYo // Go(R,R’) e M(R')dS’ (2)
s

where H' denotes the incident field due to (Jf, M) and H" is that reflected by the
ground plane without the aperture. Also, kg = 2x /X is the free space wavenumber,
Zo = 1/Y, is the free space intrinsic impedance, S denotes the planar surface area of the

aperture and éo is the free-space dyadic Green’s function given by

Go(R,R') = (T+ Elfvv) Go(R,R') 3)
4]

with
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Enforcing continuity of the tangential electric fields across the aperture, we find that
the field in region II can be represented by the radiation of the equivalent magnetic
current —M. The fields in the two regions are then coupled by enforcing continuity of

the tangential magnetic fields across the aperture. This gives

zx HI(M,J', M) =z x H/(-M) at 2=0 (4)



where H! and H! denote the magnetic fields in regions I and IT, respectively.

Traditionally, M is solved from (4) by substituting for H' as given in (2) and ex-
pressing H'! as a function/integral of M. The resulting integral equation(s) are then
discretized to obtain a system of equations for solution via direct inversion or LU de-
composition. However, to explicitly express H'! in terms of M implies a knowledge of
the cavity’s Green’s function. For rectangular cavities filled with homogeneous material,
this is usually found in modal form which is in general computationally inefficient [5].
Furthermore, in the case of arbitrarily shaped and/or inhomogeneously filled cavities
there is no available closed form of the associated Green’s function. As a result, so far
numerical solutions have only been considered for cavities that are rectangular and filled
with homogeneous or uniformly layered material [4], [5].

To overcome the difficulty associated with the availability of the cavity Green’s func-
tion, we employ the finite element method to formulate the fields in the cavity region

(region II). Specifically, the cavity fields are demanded to satisfy the variational equation
6F =0 (5)
where the functional F is given by [11]

PE) = g [ (e e g (7o)

-k ET o EY] av +jkozoﬂ (B x H'T) ¢ dS (6)
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if the variation is taken with respect to the electric field or by

F(u") = %/]/v [ei (Vxm) o (vxHT) + e,;z (o po11)?

~k3uHT o HY) av +jkoYo# (E x H'T) o 2d$ Q)
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if the variation is taken with respect to the magnetic field. In these, V denotes the
volume occupied by region II, S.,, corresponds to the surface that encloses V and
denotes the unit vector normal to the surface, pointing away from the cavity. Since
the divergence of E!/ is zero in the source free region, it would appear that the second
term in (6) and (7) is superfluous and, in fact, it is not included in the corresponding
expressions found in [11]. However, a solution of (5) with s = 0 does not guarantee
that the resulting fields will be maxwellian unless the divergence conditions are also
satisfied. In the case of two-dimensional solutions they are satisfied a priori but not so
for three-dimensional implementations. Here we propose that the divergence conditions
be satisfied approximately and implicitly [12] by minimizing (6) or (7) with s # 0. The
parameter s is referred to as the penalty factor and its choice will be discussed later.
To solve (6) or (7), it is necessary that the fields be known over the surface specified
by Scqv. Obviously, the boundary conditions to be imposed on the conducting boundaries

of the cavity are
AxET=0 (8)
and
neHT =0 (97)

Substituting these into (6) and (7) eliminates the portion of the surface integral over
the conducting boundary of the cavity (that is, there is no power flow through the
metallic portion of S,,,). It remains to specify the boundary condition over the cavity’s

aperture and this is given by (1). With these boundary conditions we may proceed with



a discretization of (5) which in conjunction with the discretization of (2) yields a system
for a solution of M. Here the continuity condition (4) is enforced upon the discretized
fields and this is the standard procedure employed in general finite element-boundary
integral formulation [13]. However, if (6) is used the enforcement of (4) can be executed

at the analytical stage by substituting (2) into (6). Doing so, we obtain the functional

F = %[//V[-:— (v x ET) o (vxET) + 2 (VeeET) — e ET e B av

Hrér

_2K2 //s M(R) o [ /fs Go(R, R’)oM(R’)dS”] ds

—jkoZo //S M(R) « [H(R) + H'(R)] dS (10)

which can be discretized via the finite element method for a solution of M. Once M is

found, the far zone scattered field can be easily computed from

€ ko R
27 R

H*’(R) = —jkoYo

/](éé + 4303) . M(:L", yr)ejko sin 8(z’ cos ¢4y’ ginqﬁ)dxldyl (11)
S

where (R, §,¢) are the usual spherical coordinates of the observation point. The radar

cross section (RCS) of the aperture is then given by

: 2 JH (R)[?
= —_ 2
o I%gnw4rR [H(R)[? (12)
III. FINITE ELEMENT DISCRETIZATION
For a numerical implementation of (5) we must first discretize the functionals by
subdividing V and § into smaller volume and surface elements, respectively. Considering

the electric field formulation, it is convenient to rewrite the functional F' as

F=Fy+Fs+ Fg (13)



where Fy is the volume integral

_1 1 ((OE, OE,\\? (dE: OE.\* (38E, 09E:\*
Fv—iﬂ/\/{ur[(ayuaz)+(az—8z) +(6x_6y>

rEJ: ,-E r-Ez 2
+prsez [a(eaa: ) + a(fayﬂ) * 6(632 )J - kger (Eg * E3 F E’?)} W (9

obtained by expanding the appropriate integrand in (10) and Fs denotes the surface

integral
Fs = —2k2 //S M(R) » [ //S Go(R,R') s M(R’)ds'] ds. (15)
The remaining portion of F is associated with the source field and is given by
Fg = —2jkoZ0 //S M(R) « H'(R)dS (16)

upon using the relation z x H"(R) = 2z x HY(R). For simplicity, in (14) we have omitted
the superscript IT and this practice will be continued in the remaining portion of the
paper.

To discretize (14) we subdivide the volume V into M, small volume elements such
as tetrahedra, triangular prisms, or rectangular bricks. Within the eth element having
n nodes, the field components are expressed as

n
Ep=Z,IN,-°(z,y,Z)¢§j pP=2,9,2 (17)

j=
where N are the known expansion or shape functions (see Appendix) chosen so that ¢},
(p = z,y, 2) represents the unknown field at the jth node of the eth element. Substituting
(17) into (14) yields the portion of Fy attributed to the eth element. The complete

expression for Fy is then obtained by summing/assembling the contributions from all



elements. This yields a functional in terms of the unknown node field components which
must be found to satisfy (5). In accordance with the Rayleigh-Ritz procedure this is
equivalent to setting the derivatives of F' with respect to the node fields ¢;; (p = z,y, 2)
equal to zero. Differentiating the portion of Fy attributed to the eth element with

respect to the node field ¢7; we obtain

0Fy _ % 1 [[s8(erN5)O(e-N7)  ON;ON  ONp ONS
B gﬂfv u{[ ¥

0%, € Oz oz 3y Oy 52 92
e NeNel ge. 4 | SOEN) O NT)  ONFONT] .
kerr NE ] =J+[e2 5z 9y By 95|V
8 e NE)HeNT)  aNEONT] .
+L? 0z 5 0z 0z | [V (18)

Similarly, by differentiating with respect to the other node field components we have

oFy i/// 1[5 03(eNS)O(&N7) QN7 ONT| .
083, - SV pr e Jy Oz dr 8y | ¥

[3 NP ON} | s (e NE)O(eNT) | ONg ONT ] e
yJ

L _ k2e,u, NEN?
oz 0z & Oy Oy 8z 9z  ofrHriid

[ia(erf) B(E,-NJ-’) _ ON? BN;]

e Oy 0z 0z Oy ’j}dv (19)

and

oy _ $ i L[[+0aN)AGN) o 2N)
ods;, ot e pur | | Oz Oz dr 0=z z

[ia(ér]vf) a(er;) _ aN‘e aNJc] & [aN:?_{_Vz

e 9z Oy dy 8z | "W dz Oz

ONfON: s 8(e,Nf)O(e-N¥)
Yoo ta SR e NN | 05 V. (20)

We observe that if ¢, and u, are assumed constant within the eth element, all integrals
in (18)-(20) can be evaluated analytically. Otherwise, a numerical integration may be

be required for their evaluation.



Let us now consider the discretization of the surface integral in (15). A difficulty
in the evaluation of this integral is the usual singularity associated with the derivatives
of the free space Green’s function. This, however, can be avoided by transfering the
derivatives to the current. To do so, we invoke a common vector identity and the

divergence theorem, leading to
Fs = -2 //S M(R) o [kg //S M(R')Go(R, R')dS’
+V //S v'.M(R')GO(R,R')dS'] ds. (21)
Through the same process, (21) can be further rewritten as
Fs = —22 //s M(R) o [ //S M(R’)G'O(R,R’)ds’} ds

+2 //S V ¢ M(R) [ //; V’-M(R’)GO(R,R’)dS’] ds (22)

and by invoking (1) we obtain

Fs = —2K2 //S E. [ //S ExGodS'] dS + 2k3 //5 E, [ //S E'yG'odS’] ds
w2 [ (G - 52) L (5 - 52) Goss] as @)

which can be discretized by subdividing S into M, smaller surface elements. In parallel

with the volume discretization, the field components in the eth surface element can be

expressed as

EP=Z‘NJC(Z?y)¢;J p=z,y (24)
j=1 :

where n, denotes the number of nodes associated with the area element, N7 are the

same expansion functions as those in (17) with z = 0 and ¢;; (p = z,y) represent the



node fields. Substituting (24) into (23) and replacing S in the first pair of integrals with
S¢, the area of the eth surface element, gives the portion of Fg attributed to the eth
element. As noted earlier, to enforce the stationarity condition we need the derivatives

of Fg with respect to the node fields. For the eth element we have

OF; M, n,
S _ _oun? e e e '
G = u ;;%,//SeNJGodS as
ONg | Ms 2s ON¢ INE
+2// i // ( L gt — —1 °‘)GodS’ ds, (25)
s Oy [2,2 ACTAC I TAC
OF; M, na
——5=—k2f/N-° e.f/Ne ds'| d
55 25 Jf ;E% [ N3Gods'| ds
ONg | o 2 dN: . ONP |
_2[/e Oz ZIZ//e(ayf zj = 3; yj) GodS'| dS (26)
e=1j=1 )

and dF5/84%; = 0 since Fs is not a function of E;. We note that in deriving (25) and (26)
the differentiation was performed only with respect to the node fields outside the square
brackets in (23) while those introduced by substituting (2) into (6) remained uneffected.-
Further, we remark that the evaluation of the surface integrals in (25) and (26), although
not trivial, can be done through analytical and numerical means as discussed in the
Appendix.

It remains to discretize (16) which involves the excitation fields. By replacing M

with E in accordance with (1) we obtain
Fg = 25k0Zo //S (E.H; - E,HY) dS. (27)

This can again be discretized by introducing the expansion (24) and by doing so we

10



obtain (for the eth element only)

9% _ gjkez // NEH:dS (28)
and

9FE — ojkoz / NEHidS (29)
6¢;‘ - J 040 ge 4 z
Given the partial derivatives of all integral functions comprising the functional F' we

can now proceed with the construction of the final system of equations by imposing the

stationarity condition (5). This implies that

oF OFy oF¢ OFg
5% E %t Zw *Z—E

e-l e—l
OF FV OF% OFg
= = + -+ L= 30
a¢yi e-zl ad’e e—zjl 09, z:1 (30)
OF 6FV .
Bon i=123,...,N

leading to a matrix system for the solution of the node fields. In (30) N denotes the
total number of nodes, ¢, (p = z,y, 2) are the node fields labeled with global indices
and as before ¢7; (p = z,y,2) are the node fields associated with the eth volume or
surface element. Both ¢p; and ¢° refer to the field at the same node and thus the eth
term of the summations have non-zero values only if the global node ¢ belong to the
eth element. The system implied by (30) must, of course, be solved after imposing the
boundary condition (8) which permits us to zero out those field components that belong
to nodes on metallic boundaries and are also tangential to that boundary. This reduces
substantially the number of unknowns in the system which can then be solved via direct

inversion, LU decomposition, or iteration. However, since the system matrix is partly full

11



and partly sparse as well as symmetric and banded (if the nodes are properly numbered),
it can be more efficiently solved by those algorithms which exploit these properties [14].
Various partition techniques such as the those discussed in [15] can also be employed
to enhance the efficiency of the solution. Further, the matrix system is amenable to a
conjugate gradient-fast Fourier transform solution, thus, reducing the memory demand
to O(N) as in [1], [2].

Let us now briefly address the formulation resulting from a finite element discretiza-
tion of (7). In this case we cannot invoke (4) to incorporate (2) into (7) and obtain an
expression that is completely in terms of the unknown nodal magnetic fields. As a re-
sult, the continuity condition (4) must be explicitly imposed leading to a second system
of equations to be coupled with that from the discretization of (7). The penalty with
this approach is an increase in the number of unknowns because the surface magnetic
currents or electric fields must be added to the nodal magnetic fields resulting from the

discretization of region II. Accordingly, the system resulting from (7) is of the form

[K]{¢} + [Bl{¢s} =0 (31)

where {#} is a column vector representing the nodal values of the discretized magnetic
field in the cavity and over the aperture, and {5} is a similar column for the discretized
aperture electric fields. The matrix [K] is square and symmetric whereas [B] is rectangu-
lar. Further, both matrices are very sparse and banded provided the nodes are properly

numbered. A corresponding discretization of (2) via Galerkin’s methods leads to
(BT {¢} + [P){#s} = {6} (32)
where the superscript T denote the transpose and [P] is a full, square and symmetric

12



matrix. Further, {b} is the excitation column vector and is a function of the incident field.
Combining (31) and (32) yields a symmetric system that can be solved after imposing

the boundary condition (9).

IV. NUMERICAL RESULTS
We present in this section some results for reference purposes and for validating the

proposed formulation. In all cases, the excitation is a plane wave given by
E(R) = [(& ¢ 6)6 + (& 0 §)dle R (33)

where & = 6 cos a + ' sin a is the polarization vector, k' is the propagation vector given

by
k* = —ko(sin 8 cos ¢'% + sin 8° sin @'y + cos 6°%) (34)

and # and ¢ are the usual unit vectors in the spherical system and are associated with
the angles #* and ¢'. Further, in all computations the penalty factor s was set to unity
and rectangular bricks were used for the discretization of region II.

For reference, Figure 2 shows the y-component of the electric field along the center
of an aperture formed by a narrow crack of length a = 0.5, 1.0A, 1.5 and 2.0A. We
remark that the behavior of the aperture field associated with the cavity-backed structure
is distinctly different from that of a transmitting aperture as given in [16].

Figure 3 displays the co-polarized and cross-polarized backscatter RCS of a deep
empty cavity as compared with data obtained via the moment method/modal approach
[5]. Overall the agreement between the results from the two methods is seen to be

excellent except at the point (¢ = 90°) for @ = 90°. We also note that the data in

13



this figure are in agreement with those obtained using the mode matching procedure [4].
For the same aperture size, Figure 4 displays the cavity RCS as a function of depth.
The resonant behavior of the cavity is rather distinct and characteristic of the cavity
dimensions.

The backscatter RCS of a material filled cavity is displayed in Figure 5. The re-
sults based on this formulation and the moment method/modal approach are again in
excellent agreement. Finally, Figure 6 refers to a cavity filled with multilayer material.
The presented formulation is, of course, applicable to cavities filled with inhomogeneous
material whereas traditional approaches are not. Further, arbitrary shape cavities can

be treated with the same ease by employing an appropriate mesh generation algorithm.

V. DISCUSSION

There are a few issues which must be addressed in connection with the proposed
formulation and the solution of the resulting system. In particular, below we discuss the
role and choice of the penalty factor and the difficulty associated with the representation
of the fields near corners and edges. Also, a few remarks are included with respect to
the efficiency of this solution versus those based on more traditional approaches.
A. Penalty Term

As we stated above, the role of the penalty term is to implicitly satisfy the diver-
gence conditions on the electric and magnetic fields. The term was first introduced in the
stationary functional to remove the spurious modes that often appear in finite element
solutions of eigenvalue problems such as those pertaining to waveguides and closed cavi-

ties [12]. For those problems the role of the penalty term was very crucial in determining

14



the proper modes, propagation constant or resonant frequencies. For this application we
observed that in most cases the actual value of the penalty factor (s from 0 to 2) has
a small effect on the RCS pattern. Nevetheless, it is desirable to avoid the ambiguity
associated with the penalty term and this can be accomplished by using divergenceless
basis functions [17].
B. Corner/Edge Conditions

It is known [18] that some field components are singular near sharp perfectly conduct-
ing edges as is the case with the four edges forming the aperture in Figure 1. The basis
functions used in this paper or other similar conventional basis functions are not capable
of accurately representing those field singularities. This, of course, leads to errors in the
calculated field distribution which can be avoided by modifying the field expansion to
include basis functions that simulate its expected singular behavior as determined from
a static solution. A successful example of this is given in [19] and the approach could
be extended to three-dimensions. We note that for the computations in this paper we
did not observe a noticeable effect on the RCS pattern due to errors associated with the
edge condition.
C. Computational Efficiency

The proposed formulation was considered because of its potential to treat cavities of
arbitrary shape and material fillings. However, it was also found more computationally
efficient than tradiational formulations [4], [5] without even making use of the symmetry
and sparseness properties of the resulting matrix. In particular, by using LU decom-
position for the solution of the matrix system, the data in Figure 3 were generated in

less than one minute on an Apollo DN10000. In contrast, the corresponding time when

15



using the mode matching technique was five minutes on a Cray XMP-48 [4] and that
for the moment method/ mc_-ada.l approach was two minutes on an Apollo DN10000. The
CPU time differences between the moment method/modal approach and the proposed
formulation are even more apart for larger apertures. For example, the data in Figure
5 were obtained in four minutes on an Apollo DN10000 by this method but 65 minutes
were required with the moment method /modal approach on the same machine. A major
reason for the large difference in CPU time is due to the slowly converging mode sums

that must be evaluated in the process of generating the matrix elements.

VI. SUMMARY

A new technique was proposed for a numerical characterization of the scattering
by a 3-D cavity-backed aperture in a ground plane. The proposed technique combines
the finite element and boundary integral methods to generate a system of equations
for the aperture fields in conjunction with the continuity condition at the aperture.
In principle, the technique is capable of treating arbitrarily shaped cavities filled with
inhomogeneous materials. However, because of the lack of available reference data, the
proposed solution was only validated for rectangular cavities. Some important issues

relating to the implementation and effciency of the technique were also discussed.

APPENDIX
A suitable element for the discretization of a rectangular cavity is the rectangular
brick illustrated in Figure 7. For this element, the expansion functions in (17) are given

by

e_ (@ =YV -y)I-2) L. O -y)-7) . _zY(-2)
Ny = a'b'c Nz = a'l¢e N5 = a'tc!
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N: - (al _ zI)yl(cr' - zl) Nse _ (al - zl)(bl _ yl)zl Nc : Z',(b’ _ yl)zl

a'b’e - a't’e 6 a'b'c
xlylzl . al — I’ ylzl
Ni= iz Ny = e op (35)

and those in (24) are obtained by setting 2’ equal to zero. Here (2’,y’) denote the local
coordinates associated with the e element and through a linear transformation they can
be replaced by global coordinates. Substituting these into (18)-(20), (28) and (29), the
resulting integrals can be evaluated analytically on the assumption of constant ¢, and u,
within each element. The evaluation of the integrals in (25) and (26) is, however, more
involved because of the kernel’s singularity. To illustrate how these integrals could be

evaluated let us consider one that has the generic form

v = [ v | [[L, 37 @ Gu® RS as (36)

If the eth and e’th elements are not adjacent, then mid-point integration could be used

to evaluate pfj' as
P = Ni(ze, 4e) V5 (20, 9)Go(Re, R7)S° S (37)

where the subscript ¢ denotes the point at the center of the element. Otherwise, the
eth and e’th elements could be subdivided into 3 x 3 small rectangles. Replacing the
expansion functions N{ and N_f' within each of nine rectangles with their mid-point

values yields

3 3
PE = Y 3 Ni(EmnsUmn) NS (s Yyo)Imnoe (38)

mn=1p,q=1

where

— _ [ /fs | Gu(R, R’)ds’] ds. (39)
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The integral gmnpq can again be evaluated via mid-point integration provided (z,y) and
(z',y') do not belong to the same rectangle, or share the same side. Otherwise, we

rewrite gmnpq as

1 e~ ik |R-R’| 1 5] as
Gmnpg = ir [/5.‘7.“ //S;‘,I R — R'| - IR - R/|
1 1 ,
T //fm (/[5;; R R,ld5> ds. (40)

The first integral of these has a non-singular integrand and can therefore be evaluated

numerically using a 2 x 2 Gaussian integration. The second integral has, of course, a

singular integrand and must be evaluated analytically as described in [5].
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FIGURE CAPTIONS

1 Geometry of a cavity-backed aperture in a ground plane.

2 Aperture field distribution (E,) at the center of a narrow crack. & = 0.05},
¢ =025}, ¢ = 1.0, 4, = 1.0, normal incidence. (a) a = 0.5). (b) a = 1.0X. (¢)

a =15\ (d) a = 2.0\

3 Backscatter RCS patterns for an empty cavity versus incidence angle. a = 0.7,
b= 0.1\, ¢ = 1.73), @ = 40°. Solid and dashed lines represent the solution of this
method; circles and squares represent the moment method/modal solution [5]. (a)

a = 90° (E = ¢E,). (b) a = 0° (E = §Ej).

4 Backscatter RCS for an empty cavity as a function of cavity depth. a = 0.7,

b=0.1}, 8 = 40°.

5 Backscatter RCS patterns for a material-filled cavity versus incidence angle.
a = 1.0\, b = 0.25), ¢ = 0.25), ¢, = 7.0 — 0.5, u, = 1.8 — j0.1. Solid and
dashed lines represent the solution of this method; circles and squares represent

the moment method/modal solution [5]. (a) ¢ = 90°. (b) ¢ = 0°.

68 Backscatter RCS patterns for a multilayer material-filled cavity versus incidence
angle. a = 1.0\, b = 0.25), ¢ = 0.25). Top layer: ¢, = 7.0 — 70.5, u, = 1.8 - 0.1, ¢
(thickness)= 0.0625); middle layer: ¢, = 3.0 — 50.05, p, = 2.0, ¢t = 0.125); bottom
layer: ¢, = 5.0 — 70.03, g, = 1.0, t = 0.0625). Solid and dashed lines represent the

solution of this method; circles and squares represent the two-dimensional solution

[1], [2]- (a) ¢ =90°. (b) ¢ = 0°.

7 Geometry of a rectangular brick.
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